Postprocessing of Recognized Strings Using Nonstationary Markovian Models
نویسندگان
چکیده
ÐThis paper presents Nonstationary Markovian Models and their application to recognition of strings of tokens. Domain specific knowledge is brought to bear on the application of recognizing zip Codes in the U.S. mailstream by the use of postal directory files. These files provide a wealth of information on the delivery points (mailstops) corresponding to each zip code. This data feeds into the models as n-grams, statistics that are seamlessly integrated with recognition scores of digit images. An especially interesting facet of the model is its ability to excite and inhibit certain positions in the n-grams leading to the familiar area of Markov Random Fields. The authors have previously described elsewhere [2] a methodology for deriving probability values from recognizer scores. These probability measures allow the Markov chain to be constructed in a truly Bayesian framework. We empirically illustrate the success of Markovian modeling in postprocessing applications of string recognition. We present the recognition accuracy of the different models on a set of 20,000 zip codes. The performance is superior to the present system which ignores all contextual information and simply relies on the recognition scores of the digit recognizers. Index TermsÐNonstationary hidden Markov models, zip code recognition, postprocessing, class conditional probability, Markov random fields.
منابع مشابه
Recognition of Strings Using Nonstationary Markovian Models: An Application in ZIP Code Recognition
This paper presents Nonstationary Markovian Models and their application to recognition of strings of tokens, such as ZIP Codes in the US mailstream. Unlike traditional approaches where digits are simply recognized in isolation, the novelty of our approach lies in the manner in which recognitions scores along with domain speciic knowledge about the frequency distribution of various combination ...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملDynamical properties of non-Markovian stochastic differential equations
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an Ornstein-Uhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dep...
متن کاملMarkovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non...
متن کاملTrading in Markovian Price Models
We examine a Markovian model for the price evolution of a stock, in which the probability of local upward or downward movement is arbitrarily dependent on the current price itself (and perhaps some auxiliary state information). This model directly and considerably generalizes many of the most well-studied price evolution models in classical nance, including a variety of random walk, drift and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 21 شماره
صفحات -
تاریخ انتشار 1999